
MyPhotoshop — Subject

version #1

Yet Another Kind of Assistant 2017 <yaka@yaka.epita.fr>

mailto:yaka@yaka.epita.fr

Copyright

This document is for internal use at EPITA (website) only.

Copyright © 2016/2017 Assistants <yaka@yaka.epita.fr>

The use of this document must abide by the following rules:

▷ You downloaded it from the assistants’ intranet.∗

▷ This document is strictly personal and must not be passed onto someone else.

▷ Non-compliance with these rules can lead to severe sanctions.

Contents

1 Introduction 5

2 Objectives 5

3 Mandatory 5
3.1 The Swing GUI . 5

3.1.1 Minimal architecture . 5
3.1.2 MVC design patterns and event handling . 6

3.2 Image handling . 6
3.3 Filters . 6

3.3.1 Filters architecture . 6
3.4 History . 7
3.5 Project handling . 7
3.6 Threading . 7
3.7 Project tabs . 8
3.8 Mandatory features . 8

3.8.1 Image . 8
3.8.2 Tools . 9
3.8.3 Interface . 10
3.8.4 Misc features . 11

4 Free features 11

5 Given tools 12
5.1 ImagePanel . 12
5.2 Filter . 12

6 Conclusion 12

*https://acu.epita.fr

2

http://www.epita.fr/
mailto:yaka@yaka.epita.fr
https://acu.epita.fr

Obligations

Obligations are fundamental rules shared by all subjects. They are non-negotiable and to not apply themmeans
to face sanctions. Therefore, do not hesitate to ask for explanations if you do not understand one of these rules.

Obligation #0: Your submission’s root must contain an AUTHORS file. Its format is described in Project data.
If this file is missing, you get a zero.

Obligation #1: Cheating, as well as sharing source code, tests, test tools or coding-style correction tools
is strictly forbidden and penalized by not being graded, being flagged as a cheater and reported to the
academic staff.

Obligation #2: If you do not submit your work before the deadline, your grade will be replaced by F.
Obligation #3: Your submission repository must be clean. Except for special cases, which (if any) are

explicitely mentioned in this document, an unclean repository may contain:
◦ binary files;1

◦ files with inappropriate privileges;
◦ forbidden files: *~, *.swp, *.o, *.a, *.so, *.class, *.log, *.core, etc.;
◦ a file tree that does not follow our specifications (see Project data).

Submitting an unclean repository lowers your final mark.
Obligation #4: All your files must be encoded in ASCII or UTF-8 without BOM.
Obligation #5: If a function, a command or a library is not explicitly authorized, it is forbidden. Abuses

may lead to a sanction.
Obligation #6: When examples demonstrate the use of an output format, you must follow it scrupulously.

Advice

▷ Read the whole subject.

▷ If the root of your submission contains a bootstrap file, it will be executed first. This behavior will
then be applied to an eventual configure file. Therefore, these files shall be executable.

▷ If the slightest project-related problem arise, you can get in touch with the assistants.

Post in the epita.cours.java newsgroup (with the [MPH] tag) for questions about this document,
or send a ticket to <yaka@yaka.epita.fr> otherwise.

▷ In examples, 42sh$ is our prompt: use it as a reference point.

▷ Do not wait for the last minute to start your project!

1If an executable file is required, please provide its sources only. We will compile it ourselves.

3

mailto:yaka@yaka.epita.fr

Project data

Instructors:

• Adrien Toubiana <toubia_a@yaka.epita.fr>
• Nils Layet <layet_n@yaka.epita.fr>
• Tania Situm <situm_t@yaka.epita.fr>

Important dates: start: Monday, April 18, 2016 09:00 PM
end: Sunday, May 8, 2016 11:42 AM

duration: 19 days, 14 hours, 42 minutes

Dedicated newsgroup: epita.cours.java with [MPH]

Members per team: 1

Languages & compilers:

Java with Java v.1.8 Û javac

Directory tree1 of your submission:
./src/ * Contains your source files.
./tests/ * Contains everything related to your tests.
./TODO * Lists what still needs to be implemented. It must be updated regularly.
./README * Describes your project, its algorithms and how to use it, in a correct

English.
./AUTHORS * Lists the project authors’ logins (leader first) as follows: an asterisk *,

a space, a login (e.g. login_x) and a newline. Thus:
42sh$ cat -e AUTHORS
* login_x$
42sh$

1Asterisk-marked files are mandatory. The dot “.” is the root of your repository. This list is not exhaustive!

4

mailto:toubia_a@yaka.epita.fr
mailto:layet_n@yaka.epita.fr
mailto:situm_t@yaka.epita.fr

1 Introduction

At the end of the next three weeks, you will have built a full-featured application by yourself. The myPho-
toshop project aims to gather what you have learned last week. For those who do not already know what
myPhotoshop is, your work is to implement an image processing platform and its graphical interface in
Java. This project is really fun, however, you should consider doing it seriously. You could easily have a
good grade at this project if you produce a high-quality work.

2 Objectives

First of all, here is a non-exhaustive list of the main objectives of this project:

• build a GUI based on Swing;
• save and load your myPhotoshop projects;
• package your filters in *.jar files and load them at runtime;
• understand and implement a software architectural pattern;
• make your application multi-threaded.

3 Mandatory

The mandatory part forces you to build a robust application. You will learn a lot of things here and be well-
prepared to implement all the features you want. Do it seriously and the rest of the project will be painless.

Not having the mandatory will lower your grade drastically. Therefore, do not forget to have everything
complete and working before jumping to the free features.

3.1 The Swing GUI

3.1.1 Minimal architecture

The Graphical User Interface of your application must be built using the Swing library. Swing is a set of
Java classes from the Java Foundation Classes (JFC), a framework that lets you build, guess what, graphical
applications. Even if you are completely free to choose what your application will look like, we have some
expectations. Consequently, a minimal interface must consist, at least, of:

• a menu;
• a dedicated space to display an image;
• an insert where you display the history of the project.

Finally, the default interface must be written in well-formed English.

5

3.1.2 MVC design patterns and event handling

Swing is by nature a Model-View-Controller (or MVC) platform. As you will see, Swing is very easy to
understand and manipulate, however, things can quickly go wrong if you don’t think your interface. That’s
why we want you to base your application on the MVC design pattern.

We will check during the defense that the architecture of your application follows the MVC rules. Your
application needs to implement at least three interconnected partswith clarity: - Model - View - Controller

Moreover, you should have already noticed that the Model needs a simple way to notify the View of any
change in its state. Thus, we want the MVC in your application to rely on the Observer design pattern or any
other event handling pattern. However, we highly recommend you to use the Observer in your interface.

3.2 Image handling

To be usable, your application must handle several image formats. We expect your application to be able to
load and save images of the following formats:

• Bitmap;
• JPEG;
• GIF;
• PNG.

3.3 Filters

Since your application is an image processing tool, you should implement some filters. All the filters you will
create must not be hard-coded into your Java application. You will have to develop each filter in a separate
class which will implement the Filter interface we provide you with. Once compiled, all your filters will
turn into *.class files and have to be gathered in one of the two following sets of filters:

• BasicFilters.jar that will contain all the mandatory filters;
• BonusFilters.jar that will contain your extra filters.

To sum up, you have to load some .jar files at runtime containing your filters which are implementing the
Filter interface.

All your filters must be developed independently from your application. It is always a good practice to have
your code as independent as possible. In your case, it must be possible to launch your filters on a different
implementation of myPhotoshop, and your application must be able to launch any filters that follows the
Filter interface.

3.3.1 Filters architecture

In addition to the ./src/{...} directory, we ask you to make another directory for your filters:
1 ./FilterSource/
2 |-- src/
3 |-- filter/
4 |-- basic/
5 |-- bonus/
6 |-- Filter.java

6

The above schema should be sufficiently self-explanatory, but do not hesitate to call an assistant if you have
any doubt.

Speaking of mandatory filters, here is a list of all the filters you will need to implement:

Invert Inverts the colors of the image
Binary Turns your image into a black and white image
Grayscale Turns your image into a grayscale version of it
Rotate left Rotate your image of +90 degrees
Rotate right Rotate your image of -90 degrees
Vertical flip or horizontal symmetry makes the upside down
Horizontal flip or vertical symmetry makes the left-side right

Your application must load every filter located in the ./filters/ folder. You can consider all the filters as
well-formed, i.e. you don’t have to handle any kind of errors. All the *.class files inside your filters JARs
will implement the Filter interface.

3.4 History

Every time you apply a filter on an image, it must be possible to cancel what you have done. Conversely, it
must be possible to redo what you’ve canceled.

3.5 Project handling

The load/modify/save process does not let you keep track of the history. To do so, you will have to serialize
your image and the history of all its transformations. Obviously, you will have to implement the reverse
operation, i.e. the loading of your project so that you can retrieve your image and its history. Your project
files must be saved under the *.myPSD extension.

To sum it up, you must implement:

• the creation of a new project with or without a base image;
• the loading of an existing project;
• the saving of the current project;
• the closing of the current project.

3.6 Threading

It would be a shame if your application froze each time you apply a filter. To avoid this annoying effect,
when a filter is used, the computation must happen in a separate thread.

Some filters you will write can take a while to end. Thus, we ask you to set up a Cancel functionality that
lets the user…cancel the filter computation.

7

3.7 Project tabs

Your application must be capable of handling several projects opened at the same time in a single window
using tabs for navigation to switch between them.

By default, your application will open images or projects as tabbed documents, and it switches between each
of them when clicking on the desired tab. Each tab must display the name of the project and be able to be
closed independently.

3.8 Mandatory features

In addition to the base mandatory part that your project must contain, you have to add special features to
your project. The features are assigned to a level, according to their difficulty. You are required to implement
enough levels to get a total of 6 to fulfill the mandatory (for example: level 3 + 3 * level 1 = 6). Furthermore,
you can choose any features from any categories, regardless of the previous feature implemented.

Be careful: if a feature is not fully implemented, it will not be taken into account at all. Finally, if you choose
higher levels, you will be rewarded accordingly.

3.8.1 Image

Open / Closing images (level 2)

• Open rights are handled
• Bad files are handled (wrong format, corrupt files, …)
• Open an image from the clipboard
• Ability to open several files at the same time
• Previsualization of the image in a FileChooser before opening
• Ability to close all files in the same time
• Safe quit of the application (pop-up in case of change)

Saving (level 2)

• Written rights are managed
• Save / Save as opens a FileChooser
• Save is enabled only if a modification has been done
• A pop-up opens in case of existing file
• Compression is achieved when saving a project

Layers (level 3)

• Layers are orderable, duplicable and mergeable
• Opacity of a layer is editable
• Layers can be hidden
• Apply a filter on a layer only
• Apply a tool on a layer only

8

Gif (level 2)

• Gif images can be opened
• Frames of the gif can be displayed and edited separately
• Transparency in gif is handled

Histogram (level 1)

• View and edit the RGB histogram of the image
• View and edit the luminosity histogram of the image

3.8.2 Tools

Selection (level 3)

• Square selection
• Oval selection
• Free selection (with the mouse)
• Select all
• Deselect all
• Selection inversion
• Selection by contiguous color (with editable threshold)
• Apply a filter only in a selection

Pencil (level 1)

• Pencil size, shape, color and opacity are editable
• Layers / history are updated during drawing

Eraser (level 1)

• Opacity is editable
• If working with layers, only the current layer must be erased

Zoom / Pan (level 2)

• Zoom with the scroll wheel (with the origin at the mouse position)
• Percentage of the zoom is displayed and can be edited
• Pan the image view with the mouse

Rescaling (level 1)

• The image can be scaled to given values
• The image can be scaled to the canvas
• A rescaling algorithm must be used

9

Polygons (level 2)

• Rectangle tool
• Rectangle with rounded corner (editable radius) tool
• Oval tool
• Regular polygons (with editable number of vertices)

Text (level 1)

• Ability to write text anywhere on the image
• Font, size, color are editable

Convolution matrix (level 2)

• The size, scale and values of the matrix are editable
• Multi-threaded application of the matrix
• Choose the color to change in a convolution matrix
• Predefined matrices are proposed (emboss, blur, …)

3.8.3 Interface

I18N (level 2)

• New languages are easily addable (e.g. from a configuration file)
• Language can be changed at runtime
• 3 languages are available

Look and feel (level 1)

• Look and feel is editable at runtime

Better history (level 2)

• Previous states of the history are displayed in thumbnails
• The size of the history is editable
• Ability to jump to a specific state
• The current state of the history is highlighted

Better filters (level 1)

• A loading animation is displayed when a filter is being applied
• A notification is displayed when the filter is applied

Status bar (level 1)

• A status bar shows real time information
• All actions are displayed (image saving, tool selection, undo, …)

10

Splash screen (level 1)

• A splash screen is shown when the program starts up
• A loading bar shows the loading status (not a fake one!)

Misc interface settings (level 3)

• Ability to copy / cut / paste in the project
• Inconsistent buttons are disabled
• Context menu (right-click) is used to quickly access some actions
• Drag and drop from the asset directory in a JTree
• The position of the mouse (relatively to the image) is displayed

3.8.4 Misc features

Client / server mode (level 3)

• Ability to open a project on multiple clients at the same time
• Clients see all modifications in real time
• Modifications can be saved on the local machine or on the server.

4 Free features

Themandatory part of this project is not sufficient enough to get the best grades. Your grade and your pride
will only be transcended by doing this free part. You are totally free to implement everything you want.
The only two conditions are:

• Post a news explaining all the features you have implemented;
• Do not post a news containing a feature that was already announced in previous news.

We do not prohibit you from doing the same features as your friends, you simply have to list the features
which were not already described by another student before you. Penalties will be applied if you don’t
respect this last rule.

Obviously, the more your features are useful and well-implemented, the better you will be rewarded. For
those who don’t know where to start, you can pick up any feature from the list of mandatory features if it’s
not already in your mandatory. Furthermore, here is a list of some features, not ordered by difficulty, that
you should consider:

• Filter preview
• Project-file compression
• Apply filters through the pencil
• Mnemonics accelerators
• Logging system
• Handling exotic color spaces
• Saving / loading the user settings
• Web interface to display the image
• Editing with collaborators over the network

11

• Cloud storage integration (Google Drive, OneDrive…)
• Steganography
• Completely guided interface with help
• Personalized icons and buttons
• Implementation of other design patterns (State maybe)
• All Adobe Photoshop tools…

To avoid you a lot of pain, we highly discourage you to try to handle the original .PSD format. But if you do
so, post a news.

5 Given tools

5.1 ImagePanel

ImagePanel is a wrapper class around the BufferedImage class that we provide. When you will try to
serialize your projects, you will realize that a BufferedImage object cannot be serialized. ImagePanel helps
you solving this problem. However, this class does not necessarily suit your needs. Feel free to modify it
since it is just a starter file.

5.2 Filter

As we explained above, all your filters have to implement the Filter interface. It ensures you to have a
method to retrieve the name of your filter and another one to actually apply the filter on a BufferedImage
and to get a modified one.

Remember that it is not possible to modify this interface: all your filters must be working flawlessly on a
totally different implementation of this project.

6 Conclusion

Again, we hope you will enjoy this project, make it fun and usable! A last advice: choose to build things that
actually work instead of a lot of unusable features, and think your interface before you start.

You’ve got to code before you can sleep.

12

	Introduction
	Objectives
	Mandatory
	The Swing GUI
	Minimal architecture
	MVC design patterns and event handling

	Image handling
	Filters
	Filters architecture

	History
	Project handling
	Threading
	Project tabs
	Mandatory features
	Image
	Tools
	Interface
	Misc features

	Free features
	Given tools
	ImagePanel
	Filter

	Conclusion

